If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3x^2)/16=33
We move all terms to the left:
(3x^2)/16-(33)=0
We multiply all the terms by the denominator
3x^2-33*16=0
We add all the numbers together, and all the variables
3x^2-528=0
a = 3; b = 0; c = -528;
Δ = b2-4ac
Δ = 02-4·3·(-528)
Δ = 6336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6336}=\sqrt{576*11}=\sqrt{576}*\sqrt{11}=24\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{11}}{2*3}=\frac{0-24\sqrt{11}}{6} =-\frac{24\sqrt{11}}{6} =-4\sqrt{11} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{11}}{2*3}=\frac{0+24\sqrt{11}}{6} =\frac{24\sqrt{11}}{6} =4\sqrt{11} $
| -22=4(7c-5 | | 8+5/6f=-2 | | 12x=-21 | | 3x+5=9x-12 | | G(x)=x-7/x^2+8x-9 | | 0.9x=0.4 | | 7b-15=5b-4 | | -3/8x-1/6x=1-4/3x | | 7=a^2-3 | | X+(x/2)=27 | | --1(8b-2)=7-8b | | -123=3(1-6x) | | 7n+17n=192 | | 2(8x-5)=2 | | 8y-6=0.33(6y+15) | | x/11+4=0 | | 52+5x=7x=6x8 | | 22+2x=37+x | | 9(3n+9)=81 | | (2d+6)/6=11 | | 5w+7=17 | | -(8b-2)=7-8b | | 86=5(4+7v)-4 | | 7x-3(-6x+5)=-240 | | -2/5+3=1/5x+11 | | 1/2+7=5x-8 | | 6-2r-3=3 | | (5x-6)+3=180 | | 5(p+4)=20 | | 77+1x=167+-10x | | 6=15d | | 4+(5-x)9=31 |